A295653 Square array T(n, k), n >= 0, k >= 0, read by antidiagonals upwards: T(n, k) = the (k+1)-th nonnegative number m such that n AND m = 0 (where AND denotes the bitwise AND operator).
0, 0, 1, 0, 2, 2, 0, 1, 4, 3, 0, 4, 4, 6, 4, 0, 1, 8, 5, 8, 5, 0, 2, 2, 12, 8, 10, 6, 0, 1, 8, 3, 16, 9, 12, 7, 0, 8, 8, 10, 8, 20, 12, 14, 8, 0, 1, 16, 9, 16, 9, 24, 13, 16, 9, 0, 2, 2, 24, 16, 18, 10, 28, 16, 18, 10, 0, 1, 4, 3, 32, 17, 24, 11, 32, 17, 20
Offset: 0
Examples
Square array begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 0 1 2 3 4 5 6 7 8 9 ... 1: 0 2 4 6 8 10 12 14 16 18 ... 2: 0 1 4 5 8 9 12 13 16 17 ... 3: 0 4 8 12 16 20 24 28 32 36 ... 4: 0 1 2 3 8 9 10 11 16 17 ... 5: 0 2 8 10 16 18 24 26 32 34 ... 6: 0 1 8 9 16 17 24 25 32 33 ... 7: 0 8 16 24 32 40 48 56 64 72 ... 8: 0 1 2 3 4 5 6 7 16 17 ... 9: 0 2 4 6 16 18 20 22 32 34 ...
Programs
-
PARI
T(n,k) = if (n==0, k, n%2, 2*T(n\2,k), 2*T(n\2,k\2) + (k%2))
Formula
For any n >= 0 and k >= 0:
- T(0, k) = k,
- T(2*n + 1, k) = 2*T(n, k),
- T(2*n, 2*k) = 2*T(n, k),
- T(2*n, 2*k + 1) = 2*T(n, k) + 1.
For any n >= 0, T(n, k) ~ 2^A000120(n) * k as k tends to infinity.
Comments