cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295658 Multiplicative with a(p^e) = p^max(0,(floor(e/2)-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Comments

a(n) differs from A053164(n) = A000188(A000188(n)) for the first time at n=64, where a(64) = 4, while A053164(64) = 2.

Examples

			For n = 64 = 2^6, a(64) = 2^(floor(6/2)-1) = 2^2 = 4.
		

Crossrefs

Cf. A046100 (positions of ones), A157289.

Programs

  • Mathematica
    f[p_, e_] := p^Max[0, Floor[e/2-1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^max(0, floor(f[i,2]/2-1)));} \\ Amiram Eldar, Nov 30 2022

Formula

a(1) = 1; for n > 1, a(n) = A020639(n)^max(0,A004526(A067029(n))-1) * a(A028234(n)).
a(n) = A003557(A000188(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289). - Amiram Eldar, Nov 30 2022