A295659 Number of exponents larger than 2 in the prime factorization of n.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Keywords
Examples
For n = 120 = 2^3 * 3^1 * 5^1 there is only one exponent larger than 2, thus a(120) = 1. For n = 216 = 2^3 * 3^3 there are two exponents larger than 2, thus a(216) = 2.
Links
Crossrefs
Programs
-
Mathematica
Array[Count[FactorInteger[#][[All, -1]], ?(# > 2 &)] &, 105] (* _Michael De Vlieger, Nov 28 2017 *)
-
PARI
a(n) = { my(v = factor(n)[, 2], i=0); for(x=1, length(v), if(v[x]>2, i++)); i; } \\ Iain Fox, Nov 29 2017
Formula
Additive with a(p^e) = 1 if e>2, 0 otherwise.
a(n) = 0 iff A212793(n) = 1.
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^3 = 0.174762... (A085541). - Amiram Eldar, Nov 01 2020