cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295663 a(n) = A295664(n) - A056169(n); 2-adic valuation of tau(n) minus the number of unitary prime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Crossrefs

Cf. A295661 (positions of nonzero terms).

Programs

  • Mathematica
    Table[IntegerExponent[DivisorSigma[0, n], 2] - DivisorSum[n, 1 &, And[PrimeQ@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    a(n) = vecsum(apply(x -> if(x == 1, 0, valuation(x+1, 2)), factor(n)[, 2])); \\ Amiram Eldar, Sep 28 2023

Formula

Additive with a(p) = 0, a(p^e) = A007814(1+e) if e > 1.
a(1) = 0; and for n > 1, if A067029(n) = 1, a(n) = a(A028234(n)), otherwise A007814(1+A067029(n)) + a(A028234(n)).
a(n) = A295664(n) - A056169(n).
a(n) = 0 iff A295662(n) = 0, and when A295662(n) > 0, a(n) >= A295662(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} f(1/p) = 0.22852676306472099280..., where f(x) = -1 + (1-x)*(-x + Sum_{k>=0} x^(2^k-1)/(1-x^(2^k))). - Amiram Eldar, Sep 28 2023