cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295679 Array read by antidiagonals: T(n,k) = k-Modular Catalan numbers C_{n,k} (n >= 0, k > 0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 8, 1, 1, 1, 2, 5, 13, 16, 1, 1, 1, 2, 5, 14, 35, 32, 1, 1, 1, 2, 5, 14, 41, 96, 64, 1, 1, 1, 2, 5, 14, 42, 124, 267, 128, 1, 1, 1, 2, 5, 14, 42, 131, 384, 750, 256, 1, 1, 1, 2, 5, 14, 42, 132, 420, 1210, 2123, 512, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 30 2017

Keywords

Comments

Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
Columns of the array converge rowwise to A000108. The diagonal k=n-1 is A001453. - Andrey Zabolotskiy, Dec 02 2017

Examples

			Array begins (n >= 0, k > 0):
======================================================
n\k| 1   2    3    4    5    6    7    8    9   10
---|--------------------------------------------------
0  | 1   1    1    1    1    1    1    1    1    1 ...
1  | 1   1    1    1    1    1    1    1    1    1 ...
2  | 1   2    2    2    2    2    2    2    2    2 ...
3  | 1   4    5    5    5    5    5    5    5    5 ...
4  | 1   8   13   14   14   14   14   14   14   14 ...
5  | 1  16   35   41   42   42   42   42   42   42 ...
6  | 1  32   96  124  131  132  132  132  132  132 ...
7  | 1  64  267  384  420  428  429  429  429  429 ...
8  | 1 128  750 1210 1375 1420 1429 1430 1430 1430 ...
9  | 1 256 2123 3865 4576 4796 4851 4861 4862 4862 ...
...
		

Crossrefs

Programs

  • Maple
    A295679 := proc(n,k)
        if n = 0 then
            1;
        else
            add((-1)^j/n*binomial(n,j)*binomial(2*n-j*k,n+1),j=0..(n-1)/k) ;
        end if ;
    end proc:
    seq(seq( A295679(n,d-n),n=0..d-1),d=1..12) ; # R. J. Mathar, Oct 14 2022
  • Mathematica
    rows = cols = 12;
    col[k_] := Module[{G}, G = InverseSeries[x*(1-x)/(1-x^k) + O[x]^cols, x]; CoefficientList[1/(1 - G), x]];
    A = Array[col, cols];
    T[n_, k_] := A[[k, n+1]];
    Table[T[n-k+1, k], {n, 0, rows-1}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2017, adapted from PARI *)
  • PARI
    T(n,k)=polcoeff(1/(1-serreverse(x*(1-x)/(1-x^k) + O(x^max(2,n+1)))), n);
    for(n=0, 10, for(k=1, 10, print1(T(n, k), ", ")); print);

Formula

G.f. of column k: 1/(1-G(x)) where G(x) is the reversion of x*(1-x)/(1-x^k).