A295704 Number of equivalence classes of 132-avoiding permutations of [n], where two permutations are equivalent if they have the same set of pure descents.
1, 1, 2, 4, 10, 26, 66, 169, 437, 1130, 2926, 7597, 19749, 51381, 133812, 348755, 909464, 2372862, 6193720
Offset: 0
Links
- Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, Forests and pattern-avoiding permutations modulo pure descents, Permutation Patterns 2017, Reykjavik University, Iceland, June 26-30, 2017. See Section 5.
Crossrefs
Programs
-
Sage
def DD(p) : pure_descents = [] occur = 0 for i in range(len(p)-1) : hi = p[i]; lo = p[i+1] mask = ((1 << (hi - lo)) - 1) << lo if hi > lo and not (occur & mask) : pure_descents.append((hi, lo)) occur |= 1 << hi pure_descents.sort() return pure_descents def a(n): return len({tuple(DD(p)) for p in Permutations(n, avoiding=[1,3,2])})
Comments