A295723 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3.
0, 1, 2, 3, 7, 10, 21, 31, 60, 91, 167, 258, 457, 715, 1236, 1951, 3315, 5266, 8837, 14103, 23452, 37555, 62031, 99586, 163665, 263251, 431012, 694263, 1133467, 1827730, 2977581, 4805311, 7815660, 12620971, 20502167, 33123138, 53756377, 86879515, 140898036
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -2)
Programs
-
Mathematica
LinearRecurrence[{1, 3, -2, -2}, {0, 1, 2, 3}, 100]
Formula
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3.
G.f.: (x + x^2 - 2 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
Comments