A295730 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -1, a(1) = 0, a(2) = 0, a(3) = 1.
-1, 0, 0, 1, 3, 6, 13, 23, 44, 75, 135, 226, 393, 651, 1108, 1823, 3059, 5010, 8325, 13591, 22428, 36531, 59983, 97538, 159569, 259155, 422820, 686071, 1117083, 1811346, 2944813, 4772543, 7750124, 12555435, 20371095, 32992066, 53494233, 86617371, 140373748
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (1, 3, -2, -2)
Programs
-
Mathematica
LinearRecurrence[{1, 3, -2, -2}, {-1, 0, 0, 1}, 100]
Formula
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -1, a(1) = 0, a(2) = 0, a(3) = 1.
G.f.: (-1 + x + 3 x^2 - x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
Comments