cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295741 a(n) is smallest divisor d of the n-th primorial such that d + prime(n)#/d is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 5, 6, 10, 2, 1, 2, 11, 7, 2, 41, 2, 5, 5, 5, 3, 51, 10, 3, 14, 37, 10, 7, 2, 17, 17, 62, 21, 3, 38, 17, 47, 13, 17, 13, 7, 21, 83, 10, 138, 10, 26, 2, 7, 19, 31, 15, 13, 5, 23, 103, 19, 5, 95, 61, 6, 15, 2, 35, 13, 19, 65, 39, 7, 43, 73, 13, 26, 97, 1, 91, 2, 78, 19, 39, 34, 167, 82, 10, 38, 66, 58, 2, 46, 71
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) < prime(n)^2 for n > 0.
a(n) = 1 iff n belongs to A014545.
Inspired by A293756.

Examples

			a(3) = 1 because 1 + prime(3)#/1 = 1 + 2*3*5 = 31 and 31 is a prime;
a(6) = 2 because 2 + prime(6)#/2 = 2 + 2*3*5*7*11*13/2 = 15017 and that is a prime;
a(7) = 5 because 5 + prime(7)#/5 = 5 + 2*3*5*7*11*13*17/5 = 102107 which is a prime; etc.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = 1, p = Fold[Times, 1, Prime@ Range@ n]}, While[ !PrimeQ[d + p/d], d++]; d]; Array[f, 90]
  • PARI
    a(n)=my(P=vecprod(primes(n))); for(d=1,P, if(P%d==0 && ispseudoprime(d+P/d), return(d))) \\ Charles R Greathouse IV, Nov 27 2017