A295761 G.f. A(x) satisfies: A(x - A(x^2)) = x + 2*A(x^2).
1, 3, 6, 24, 96, 396, 1728, 7839, 36438, 172680, 831624, 4058202, 20021268, 99697188, 500429016, 2529375300, 12862429920, 65760468840, 337817930184, 1742850773154, 9026374329108, 46912014922392, 244588357460448, 1278937818954306, 6705339839722404, 35241796466506908, 185643541655678184, 979972436105339856, 5183169679909147200, 27464173024052341200
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 3*x^2 + 6*x^3 + 24*x^4 + 96*x^5 + 396*x^6 + 1728*x^7 + 7839*x^8 + 36438*x^9 + 172680*x^10 + 831624*x^11 + 4058202*x^12 +... such that A(x - A(x^2)) = x + 2*A(x^2). RELATED SERIES. A(x - A(x^2)) = x + 2*x^2 + 6*x^4 + 12*x^6 + 48*x^8 + 192*x^10 + 792*x^12 + 3456*x^14 + 15678*x^16 + 72876*x^18 + 345360*x^20 + 1663248*x^22 + 8116404*x^24 + 40042536*x^26 + 199394376*x^28 + 1000858032*x^30 + 5058750600*x^32 +... which equals x + 2*A(x^2). Series_Reversion( x - A(x^2) ) = x + x^2 + 2*x^3 + 8*x^4 + 32*x^5 + 132*x^6 + 576*x^7 + 2613*x^8 + 12146*x^9 + 57560*x^10 + 277208*x^11 + 1352734*x^12 +... which equals (A(x) + 2*x)/3. A( (2*x + A(x))^2/9 ) = x^2 + 2*x^3 + 8*x^4 + 32*x^5 + 132*x^6 + 576*x^7 + 2613*x^8 + 12146*x^9 + 57560*x^10 + 277208*x^11 + 1352734*x^12 +... which equals (A(x) - x)/3.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..1030
Programs
-
PARI
{a(n) = my(A=x); for(i=1,n, A = -2*x + 3*serreverse(x - subst(A,x,x^2) +x^2*O(x^n)) ); polcoeff(A,n)} for(n=1,30,print1(a(n),", "))
Formula
G.f. A(x) satisfies:
(1) A(x) = x + 3 * A( (2*x + A(x))^2/9 ).
(2) A(x) = -2*x + 3 * Series_Reversion( x - A(x^2) ).
(3) x = A( -x/2 + 3/2 * Series_Reversion( x + 2*A(x^2) ) ).
(4) A(x - A(x^2)) = x + 2*A(x^2).