cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295797 Numbers that have exactly one representation as a sum of seven positive squares.

Original entry on oeis.org

7, 10, 13, 15, 16, 18, 19, 21, 23, 24, 26, 27, 29, 32, 35, 36, 41, 44
Offset: 1

Views

Author

Robert Price, Nov 27 2017

Keywords

Comments

It appears that this sequence is finite and complete. See the von Eitzen link for a proof for the 5 positive squares case.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    m = 7;
    r[n_] := Reduce[xx = Array[x, m]; 0 <= x[1] && LessEqual @@ xx && AllTrue[xx, Positive] && n == Total[xx^2], xx, Integers];
    For[n = 0, n < 50, n++, rn = r[n]; If[rn[[0]] === And, Print[n, " ", rn]]] (* Jean-François Alcover, Feb 25 2019 *)
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i<1 || t<1, 0, b[n, i - 1, k, t] + If[i^2 > n, 0, b[n - i^2, i, k, t - 1]]]];
    T[n_, k_] := b[n, Sqrt[n] // Floor, k, k];
    Position[Table[T[n, 7], {n, 0, 100}], 1] - 1 // Flatten (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz in A243148 *)

Formula

A243148(a(n),7) = 1. - Alois P. Heinz, Feb 25 2019