cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295810 G.f. A(x) satisfies: A(x)^3 = 1+x + x*(A(x)^5 + A(x)^7).

Original entry on oeis.org

1, 1, 3, 16, 97, 645, 4539, 33242, 250715, 1934131, 15190377, 121050779, 976334857, 7954909796, 65378035310, 541346845867, 4511820592102, 37819912868231, 318639423484669, 2696819879180630, 22918021992024063, 195480539889732302, 1672951468057552136, 14361120982757852887, 123625070638172667688, 1066939084577136857174
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2017

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 97*x^4 + 645*x^5 + 4539*x^6 + 33242*x^7 + 250715*x^8 + 1934131*x^9 + 15190377*x^10 + 121050779*x^11 + 976334857*x^12 +...
such that A(x)^3 = 1+x + x*(A(x)^5 + A(x)^7).
RELATED SERIES.
A(x)^3 = 1 + 3*x + 12*x^2 + 67*x^3 + 423*x^4 + 2880*x^5 + 20607*x^6 + 152763*x^7 + 1162908*x^8 + 9037195*x^9 + 71398917*x^10 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 150*x^3 + 990*x^4 + 6936*x^5 + 50640*x^6 + 381070*x^7 + 2934665*x^8 + 23016905*x^9 + 183216323*x^10 +...
A(x)^7 = 1 + 7*x + 42*x^2 + 273*x^3 + 1890*x^4 + 13671*x^5 + 102123*x^6 + 781838*x^7 + 6102530*x^8 + 48382012*x^9 + 388548244*x^10 +...
Series_Reversion(A(x) - 1) = x - 3*x^2 + 2*x^3 + 8*x^4 - 21*x^5 + 4*x^6 + 74*x^7 - 137*x^8 - 59*x^9 + 623*x^10 - 797*x^11 - 1083*x^12 + 4840*x^13 - 3793*x^14 - 12355*x^15 +...
which equals x/(1 + 3*x + 7*x^2 + 7*x^3 + 4*x^4 + x^5).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = ((1+x) + x*A^5 + x*A^7 +x*O(x^n))^(1/3) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1+x); A = 1 + serreverse( x/(1 + 3*x + 7*x^2 + 7*x^3 + 4*x^4 + x^5 +x*O(x^n)) ); polcoeff(A,n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Series_Reversion( x/(1 + 3*x + 7*x^2 + 7*x^3 + 4*x^4 + x^5) ).
(2) F(A(x)) = x such that F(x) = -(1-x)/(1 - x + x^3 - x^4 + x^5).