cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295766 G.f. A(x) satisfies: [x^(n-1)] A(x)^(n^2)/n^2 = [x^(n-2)] A(x)^(n^2) for n>=2 with A'(0) = 1.

Original entry on oeis.org

1, 1, 5, 90, 3204, 170987, 12162683, 1087504130, 118227836360, 15304211345298, 2324856843115770, 409872125913866852, 83092182794794380856, 19214014336799266619671, 5030971580159960051721815, 1481724835890098667273954338, 487883202104697456579537247232, 178595806151469762148235569612814, 72312528698655521190143801630975174
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2018

Keywords

Comments

Compare g.f. to: [x^(n-1)] G(x)^(n^2)/n^2 = [x^(n-2)] G(x)^(n^2)/(n-1) for n>=2 holds when G(x) = exp(x).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 90*x^3 + 3204*x^4 + 170987*x^5 + 12162683*x^6 + 1087504130*x^7 + 118227836360*x^8 + 15304211345298*x^9 + 2324856843115770*x^10 + ...
ILLUSTRATION OF THE DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [1, 1, 5, 90, 3204, 170987, 12162683, ...];
n=2: [1, 4, 26, 424, 14107, 729196, 50993674, ...];
n=3: [1, 9, 81, 1254, 37602, 1833597, 124332453, ...];
n=4: [1, 16, 200, 3200, 86084, 3846720, 248466736, ...];
n=5: [1, 25, 425, 7550, 188750, 7566705, 455263225, ...];
n=6: [1, 36, 810, 16680, 410499, 14777964, 808802730, ...];
n=7: [1, 49, 1421, 34594, 886312, 29473255, 1444189495, ...]; ...
in which the main diagonal
[1, 4, 81, 3200, 188750, 14777964, 1444189495, ...]
is related to an adjacent diagonal by dividing by n^2 like so:
[1, 4/4, 81/9, 3200/16, 188750/25, 14777964/36, 1444189495/49, ...]
= [1, 1, 9, 200, 7550, 410499, 29473255, ...].
Thus [x^(n-1)] A(x)^(n^2)/n^2 = [x^(n-2)] A(x)^(n^2) for n>=2.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],V); for(m=2,n+1, A=concat(A,0); V=Vec(Ser(A)^(m^2)); A[#A] = V[#A-1] - V[#A]/m^2 );A[n+1]}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* Informal method of obtaining N terms: */
    N=30; A=[1]; for(n=2,N, A=concat(A,0); V=Vec(Ser(A)^(n^2)); A[#A] = V[#A-1] - V[#A]/n^2 );A

Formula

a(A075427(k) - 1) is odd for n>=0 and a(n) is even elsewhere (conjecture).

A300873 E.g.f. A(x) satisfies: [x^n] A(x)^(n*(n+1)) = 2*n * [x^(n-1)] A(x)^(n*(n+1)) for n>=1.

Original entry on oeis.org

1, 1, 3, 43, 2041, 197721, 31094251, 7086479443, 2187876597873, 874871971357681, 438740658523346131, 269314248304239932091, 198529013874402868930153, 173067121551267519897494473, 176154202119865662835343738811, 207099741506845262022248534098531, 278645958801870115911315221474653921, 425605862347493892454320041743878801633
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2018

Keywords

Comments

Compare to: [x^n] exp(x)^(n*(n+1)) = (n+1) * [x^(n-1)] exp(x)^(n*(n+1)) for n>=1.

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 43*x^3/3! + 2041*x^4/4! + 197721*x^5/5! + 31094251*x^6/6! + 7086479443*x^7/7! + 2187876597873*x^8/8! + 874871971357681*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n*(n+1)) begins:
n=1: [(1), (2), 4, 52/3, 560/3, 52304/15, 4048864/45, 914958416/315, ...];
n=2: [1, (6), (24), 108, 864, 67104/5, 1601424/5, 348254352/35, ...];
n=3: [1, 12, (84), (504), 3600, 211968/5, 4273776/5, 860107104/35, ...];
n=4: [1, 20, 220, (5560/3), (44480/3), 438400/3, 20480720/9, 3534944800/63, ...];
n=5: [1, 30, 480, 5580, (55440), (554400), 6991920, 947466000/7, ...];
n=6: [1, 42, 924, 14364, 181440, (10403568/5), (124842816/5), 1922103792/5, ...];
n=7: [1, 56, 1624, 98224/3, 1566992/3, 107909312/15, (4208547616/45), (58919666624/45), ...]; ...
in which the coefficients in parenthesis are related by
2 = 2*1*(1); 24 = 2*2*(6); 504 = 2*3*(84); 44480/3 = 2*4*(5560/3); 554400 = 2*5*(55440); 124842816/5 = 2*6*(10403568/5); ...
illustrating that: [x^n] A(x)^(n*(n+1)) = 2*n * [x^(n-1)] A(x)^(n*(n+1)).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + x^2 + 6*x^3 + 78*x^4 + 1560*x^5 + 41484*x^6 + 1361640*x^7 + 52824144*x^8 + 2355612192*x^9 + 118455668960*x^10 + ... + A300874(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)*(#A))); A[#A] = (2*(#A-1)*V[#A-1] - V[#A])/(#A-1)/(#A) ); EGF=Ser(A); n!*A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * d^n * n!^2 / n^3, where d = -4/(LambertW(-2*exp(-2))*(2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = 0.75891265... - Vaclav Kotesovec, Aug 11 2021
Showing 1-2 of 2 results.