A296173
G.f. equals the logarithm of the e.g.f. of A296172.
Original entry on oeis.org
1, -3, -30, -2686, -517311, -173118807, -88535206152, -63977172334344, -61971659588102940, -77470793599569049440, -121439997599825393413344, -233353875172602479932391040, -539638027429765922735002220880, -1479049138515818646669055218090480, -4742815067612592169849894663392228480, -17597031102801426396121130730318359114880, -74817150772352720408567833273371047298417408
Offset: 1
G.f. A(x) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 - 539638027429765922735002220880*x^13 - 1479049138515818646669055218090480*x^14 - 4742815067612592169849894663392228480*x^15 +...
such that
G(x) = exp(A(x)) = 1 + x - 5*x^2/2! - 197*x^3/3! - 65111*x^4/4! - 62390159*x^5/5! - 125012786669*x^6/6! - 447082993406405*x^7/7! - 2583111044504384687*x^8/8! - 22511408975342644804991*x^9/9! - 281350305428215911326408789*x^10/10! - 4850582201056517165575319399909*x^11/11! - 111834955668396093904661955538037255*x^12/12! +...
satisfies [x^(n-1)] G(x)^(n^3) = [x^n] G(x)^(n^3) for n>=1.
Series_Reversion(A(x)) = x + 3*x^2 + 48*x^3 + 3271*x^4 + 575163*x^5 + 185377116*x^6 + 93039467356*x^7 + 66505075585875*x^8 + 63970743282062646*x^9 + 79580632411431634441*x^10 + 124299284968805234137968*x^11 + 238188439678208173206500760*x^12 +...+ A295813(n)*x^n +...
-
{a(n) = my(A=[1]); for(i=1,n+1, A=concat(A,0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); polcoeff(log(Ser(A)),n)}
for(n=1,30,print1(a(n),", "))
A295812
G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296170.
Original entry on oeis.org
1, 1, 3, 19, 226, 4259, 110514, 3626207, 143043592, 6567931068, 343278693103, 20092744961109, 1300754163383700, 92223505422990050, 7104166647498916816, 590661172651143976231, 52710327177111760030280, 5024720072707894279118236, 509553454073135435969780828, 54771493019290133717304608756, 6220332385328132888848047735930, 744260531662484056612631555859467
Offset: 1
G.f. A(x) = x + x^2 + 3*x^3 + 19*x^4 + 226*x^5 + 4259*x^6 + 110514*x^7 + 3626207*x^8 + 143043592*x^9 + 6567931068*x^10 + 343278693103*x^11 + 20092744961109*x^12 + 1300754163383700*x^13 + 92223505422990050*x^14 + 7104166647498916816*x^15 +...
The series reversion equals the logarithm of the e.g.f. of A296170, which begins:
Series_Reversion(A(x)) = x - x^2 - x^3 - 9*x^4 - 134*x^5 - 2852*x^6 - 79096*x^7 - 2699480*x^8 - 109201844*x^9 - 5100872244*x^10 - 269903909820*x^11 - 15944040740604*x^12 - 1039553309158964*x^13 - 74123498185170292*x^14 - 5736368141560365292*x^15 +...+ A296171(n)*x^n +...
-
{a(n) = my(A=[1]); for(i=1,n+1, A=concat(A,0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); polcoeff(serreverse(log(Ser(A))),n)}
for(n=1,30,print1(a(n),", "))
A295814
G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296174.
Original entry on oeis.org
1, 7, 591, 360071, 696409901, 2958728428011, 23164541753169117, 300801581861406441263, 6028093825088113213286946, 176753891171734450100762135773, 7275100380834838623971362431809230, 406542590169784279153263825042856310627, 30008177367626616771665421796780382440931316, 2859139755874441545650368872575815286528870509597
Offset: 1
G.f. A(x) = x + 7*x^2 + 591*x^3 + 360071*x^4 + 696409901*x^5 + 2958728428011*x^6 + 23164541753169117*x^7 + 300801581861406441263*x^8 +...
Series_Reversion(A(x)) = x - 7*x^2 - 493*x^3 - 341101*x^4 - 680813601*x^5 - 2923660883625*x^6 - 22996362478599551*x^7 - 299331006952284448127*x^8 - 6006951481145880962408552*x^9 +...+ A296175(n)*x^n +...
G(x) = exp(Series_Reversion(A(x))) = 1 + x - 13*x^2/2! - 2999*x^3/3! - 8197751*x^4/4! - 81738176899*x^5/5! - 2105524335759389*x^6/6! - 115916378979693710123*x^7/7! - 12069952631345502122877199*x^8/8! - 2179911119857340269414590758951*x^9/9! +...+ A296174(n)*x^n/n! +...
which satisfies [x^(n-1)] G(x)^(n^4) = [x^n] G(x)^(n^4) for n>=1.
-
{a(n) = my(A=[1]); for(i=1,n+1, A=concat(A,0); V=Vec(Ser(A)^((#A-1)^4)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^4 ); polcoeff(serreverse(log(Ser(A))),n)}
for(n=1,30,print1(a(n),", "))
Showing 1-3 of 3 results.
Comments