A295827 a(n) = least odd k > 1 such that n and n*k have the same Hamming weight, or -1 if no such k exists.
-1, -1, 3, -1, 13, 3, 3, -1, 57, 13, 35, 3, 21, 3, 3, -1, 241, 57, 7, 13, 13, 35, 39, 3, 169, 21, 5, 3, 21, 3, 3, -1, 993, 241, 11, 57, 7, 7, 5, 13, 3197, 13, 9, 35, 3, 39, 13, 3, 21, 169, 3, 21, 39, 5, 47, 3, 27, 21, 5, 3, 13, 3, 3, -1, 4033, 993, 491, 241
Offset: 1
Examples
The first terms, alongside the binary representations of n and of n*a(n), are: n a(n) bin(n) bin(n*a(n)) -- ---- ------ ----------- 1 -1 1 -1 2 -1 10 -10 3 3 11 1001 4 -1 100 -100 5 13 101 1000001 6 3 110 10010 7 3 111 10101 8 -1 1000 -1000 9 57 1001 1000000001 10 13 1010 10000010 11 35 1011 110000001 12 3 1100 100100 13 21 1101 100010001 14 3 1110 101010 15 3 1111 101101 16 -1 10000 -10000 17 241 10001 1000000000001 18 57 10010 10000000010 19 7 10011 10000101 20 13 10100 100000100
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..8192
- Rémy Sigrist, Logarithmic scatterplot of the sequence for n=1..2^17 and a(n) < 10^18
Programs
-
Maple
f:= proc(n) local k,w; if n = 2^padic:-ordp(n,2) then return -1 fi; w:= convert(convert(n,base,2),`+`); for k from 3 by 2 do if convert(convert(n*k,base,2),`+`)=w then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Nov 28 2017
-
Mathematica
Table[SelectFirst[Range[3, 10^4 + 1, 2], SameQ @@ Map[DigitCount[#, 2, 1] &, {n, n #}] &] /. m_ /; MissingQ@ m -> -1, {n, 68}] (* Michael De Vlieger, Nov 28 2017 *)
-
PARI
A057168(n)=n+bitxor(n, n+n=bitand(n, -n))\n\4+n \\ after M. F. Hasler at A057168 a(n) = n\=2^valuation(n,2); if (n==1, -1, my(w=(n-1)/2); while(1, w=A057168(w); if((2*w+1)%n==0, return((2*w+1)/n))))
-
Python
def A295827(n): if not(n&-n)^n: return -1 m = n while True: m = m^((a:=-m&m+1)|(a>>1)) if m&1 else ((m&~(b:=m+(a:=m&-m)))>>a.bit_length())^b a, b = divmod(m,n) if not b and a&1: return a # Chai Wah Wu, Mar 11 2025
Formula
a(2*n) = a(n) for any n > 0.
Comments