cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295828 Expansion of Product_{k>=1} 1/(1 - x^k)^(2*k*(2*k-1)).

Original entry on oeis.org

1, 2, 15, 58, 235, 862, 3122, 10664, 35639, 115164, 363806, 1122050, 3393316, 10068006, 29374056, 84347944, 238713339, 666419456, 1836986443, 5003473866, 13476019215, 35912177618, 94746481999, 247597696802, 641205816641, 1646268490598, 4192059724668, 10590937903412, 26556243826240
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Comments

Euler transform of A002939.

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^(2 k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[2 d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002939(k).
a(n) ~ exp(2^(5/2) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - Zeta(3) * sqrt(15*n) / Pi^2 - 15^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(3/2) * Pi^5) - Zeta(3) / Pi^2 - 75*Zeta(3)^3 / (2*Pi^8) - 1/6) * A^2 / (2^(4/3) * 15^(1/12) * Pi^(1/6) * n^(7/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017