cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296044 a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^n.

Original entry on oeis.org

1, 1, 5, 22, 101, 481, 2330, 11425, 56549, 281911, 1413465, 7120136, 36006362, 182681916, 929461993, 4740491107, 24229115109, 124069449335, 636376573943, 3268955179686, 16814509004601, 86593280920756, 446437797872016, 2303948443259841, 11900990745759578, 61526182236027756
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[((1 - x^(4 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(EllipticTheta[2, 0, x]/EllipticTheta[2, Pi/4, x^(1/2)]/(16 x)^(1/8))^n, {x, 0, n}], {n, 0, 25}]
    (* Calculation of constant d: *) With[{k = 4}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} ((1 - x^(4*k))/(1 - x^k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.2749356339591798618290252741994029798069148326559... and c = 0.2726256757090475625917361066565981461455343437... - Vaclav Kotesovec, Dec 05 2017

A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A296046 Expansion of Product_{k>=1} ((1 - x^(2*k))/(1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 3, 0, 3, 0, 6, 1, 3, 5, 0, 13, -3, 15, -3, 14, 6, 11, 16, -4, 38, -16, 51, -24, 65, -14, 46, 21, 10, 80, -49, 154, -102, 216, -136, 242, -119, 198, 1, 68, 189, -153, 486, -425, 775, -672, 1024, -779, 1035, -628, 782, -97, 96, 816, -930, 2069, -2203, 3428, -3413, 4546, -4130, 4958
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Product[((1 - x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 - x^(2*k))/(1 - x^(2*k-1)))^k.

A296047 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 + x^(2*k)))^k.

Original entry on oeis.org

1, 1, -1, 1, 1, 0, 0, -2, 5, 0, -2, 0, 3, 5, -11, 5, 6, 9, -17, -2, 23, -3, -11, -25, 62, -11, -27, -27, 76, 20, -104, 10, 77, 101, -243, 58, 118, 147, -353, -25, 378, 48, -372, -298, 892, -165, -444, -621, 1524, -128, -1055, -559, 1869, 575, -2682, 84, 2054, 1979, -5325, 844, 2947
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 + x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 + x^(2*k)))^k.
Showing 1-4 of 4 results.