A295878 Multiplicative with a(p^(2e)) = 1, a(p^(2e-1)) = prime(e).
1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 5, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 6, 2, 4, 4, 2, 4, 4, 4, 10, 2, 2, 2, 1, 2, 8, 2, 6, 8, 4, 2, 3, 2, 8, 4, 2, 2, 8, 4, 2, 2, 4, 4, 12
Offset: 1
Links
Programs
-
Mathematica
Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> Which[p == 1, 1, EvenQ@ e, 1, True, Prime[(e + 1)/2]]] &, 120] (* Michael De Vlieger, Nov 29 2017 *)
Formula
a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime((e(i)+1)/2)^A000035(e(i)).
Comments