A295901 Unique sequence satisfying SumXOR_{d divides n} a(d) = n^2 for any n > 0, where SumXOR is the analog of summation under the binary XOR operation.
1, 5, 8, 20, 24, 40, 48, 80, 88, 120, 120, 160, 168, 240, 240, 320, 288, 312, 360, 480, 384, 408, 528, 640, 616, 520, 648, 960, 840, 816, 960, 1280, 1072, 1440, 1248, 1248, 1368, 1224, 1360, 1920, 1680, 1920, 1848, 1632, 1872, 2640, 2208, 2560, 2384, 3016
Offset: 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..16383
- Rémy Sigrist, Colored scatterplot of the first 2^17-1 terms (where the color is function of A087207(n) % 8)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000010 (Euler totient function)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000203 (sigma)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A001157 (sigma_2)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000040 (prime numbers)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A000720 (PrimePi)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A006370 (Collatz map)
- Rémy Sigrist, Scatterplot of the first 2^16 terms of x_A005132 (Recamán's sequence)
Crossrefs
Programs
-
PARI
a(n{, f=k->k^2}) = my (v=0); fordiv(n,d,if (issquarefree(n/d), v=bitxor(v,f(d)))); return (v)
Formula
a(n) = SumXOR_{d divides n and n/d is squarefree} d^2.
Comments