cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295909 Number of (not necessarily maximal) cliques in the n X n black bishop graph.

Original entry on oeis.org

2, 4, 14, 30, 82, 160, 386, 718, 1646, 3000, 6742, 12190, 27194, 49024, 109082, 196446, 436726, 786232, 1747406, 3145486, 6990242, 12582624, 27961714, 50331310, 111847742, 201326200, 447392006, 805305918, 1789569226, 3221224960, 7158278282, 12884901310
Offset: 1

Views

Author

Eric W. Weisstein, Nov 29 2017

Keywords

Programs

  • Mathematica
    Table[((-2)^(n + 1) + (-1)^n + 19 2^(n + 1) - 6 n (n + 4) - 25)/12, {n, 20}]
    LinearRecurrence[{2, 4, -10, 1, 8, -4}, {2, 4, 14, 30, 82, 160}, 20]
    CoefficientList[Series[-2 (-1 + x^2 - 3 x^3 - 2 x^4 + 2 x^5)/((-1 + x)^3 (-1 - x + 4 x^2 + 4 x^3)), {x, 0, 20}], x]

Formula

a(n) = ((-2)^(n + 1) + (-1)^n + 19*2^(n + 1) - 6*n*(n + 4) - 25)/12.
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) + a(n-4) + 8*a(n-5) - 4*a(n-6).
G.f.: -2*x*(-1 + x^2 - 3*x^3 - 2*x^4 + 2*x^5)/((-1 + x)^3 (-1 - x + 4*x^2 + 4*x^3)).