A295909 Number of (not necessarily maximal) cliques in the n X n black bishop graph.
2, 4, 14, 30, 82, 160, 386, 718, 1646, 3000, 6742, 12190, 27194, 49024, 109082, 196446, 436726, 786232, 1747406, 3145486, 6990242, 12582624, 27961714, 50331310, 111847742, 201326200, 447392006, 805305918, 1789569226, 3221224960, 7158278282, 12884901310
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Black Bishop Graph
- Eric Weisstein's World of Mathematics, Clique
- Index entries for linear recurrences with constant coefficients, signature (2, 4, -10, 1, 8, -4).
Programs
-
Mathematica
Table[((-2)^(n + 1) + (-1)^n + 19 2^(n + 1) - 6 n (n + 4) - 25)/12, {n, 20}] LinearRecurrence[{2, 4, -10, 1, 8, -4}, {2, 4, 14, 30, 82, 160}, 20] CoefficientList[Series[-2 (-1 + x^2 - 3 x^3 - 2 x^4 + 2 x^5)/((-1 + x)^3 (-1 - x + 4 x^2 + 4 x^3)), {x, 0, 20}], x]
Formula
a(n) = ((-2)^(n + 1) + (-1)^n + 19*2^(n + 1) - 6*n*(n + 4) - 25)/12.
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) + a(n-4) + 8*a(n-5) - 4*a(n-6).
G.f.: -2*x*(-1 + x^2 - 3*x^3 - 2*x^4 + 2*x^5)/((-1 + x)^3 (-1 - x + 4*x^2 + 4*x^3)).