A295910 Number of (not necessarily maximal) cliques in the n X n white bishop graph.
4, 9, 30, 61, 160, 301, 718, 1305, 3000, 5377, 12190, 21733, 49024, 87237, 196446, 349345, 786232, 1397881, 3145486, 5592141, 12582624, 22369309, 50331310, 89478121, 201326200, 357913521, 805305918, 1431655285, 3221224960, 5726622517, 12884901310, 22906491633
Offset: 2
Keywords
Links
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, White Bishop Graph
- Index entries for linear recurrences with constant coefficients, signature (2, 4, -10, 1, 8, -4).
Programs
-
Mathematica
Table[((-1)^(n + 1) + 2^(n + 1) (17 + (-1)^n) - 6 n (n + 4) - 23)/12, {n, 20}] LinearRecurrence[{2, 4, -10, 1, 8, -4}, {4, 9, 30, 61, 160, 301}, 20] Rest @ CoefficientList[Series[x (4 + x - 4 x^2 + 5 x^3 + 4 x^4 - 4 x^5)/((-1 + x)^3 (-1 - x + 4 x^2 + 4 x^3)), {x, 0, 20}], x]
Formula
a(n) = ((-1)^(n + 1) + 2^(n + 1)*(17 + (-1)^n) - 6*n*(n + 4) - 23)/12.
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) + a(n-4) + 8*a(n-5) - 4*a(n-6).
G.f.: x^2*(4 + x - 4*x^2 + 5*x^3 + 4*x^4 - 4*x^5)/((-1 + x)^3*(-1 - x + 4*x^2 + 4*x^3)).