cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295918 T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.

Original entry on oeis.org

2, 3, 3, 5, 6, 5, 8, 13, 13, 8, 13, 28, 39, 28, 13, 21, 60, 115, 115, 60, 21, 34, 129, 337, 467, 337, 129, 34, 55, 277, 993, 1880, 1880, 993, 277, 55, 89, 595, 2919, 7604, 10290, 7604, 2919, 595, 89, 144, 1278, 8587, 30721, 56955, 56955, 30721, 8587, 1278, 144, 233
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2017

Keywords

Comments

Table starts
..2....3.....5......8......13........21.........34..........55............89
..3....6....13.....28......60.......129........277.........595..........1278
..5...13....39....115.....337.......993.......2919........8587.........25257
..8...28...115....467....1880......7604......30721......124117........501512
.13...60...337...1880...10290.....56955.....314044.....1732883.......9562608
.21..129...993...7604...56955....431844....3261576....24650278.....186318117
.34..277..2919..30721..314044...3261576...33703065...348555744....3605337986
.55..595..8587.124117.1732883..24650278..348555744..4933593439...69844332764
.89.1278.25257.501512.9562608.186318117.3605337986.69844332764.1353357158724

Examples

			Some solutions for n=5 k=4
..0..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..0. .0..1..0..0
..1..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1
..0..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..0
..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0
..1..0..0..0. .0..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..0
		

Crossrefs

Column 1 is A000045(n+2).
Column 2 is A002478(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3)
k=3: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-4)
k=4: a(n) = 2*a(n-1) +7*a(n-2) +6*a(n-3) -3*a(n-4) -4*a(n-5) +a(n-6)
k=5: [order 38]
k=6: [order 92]