A295918 T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.
2, 3, 3, 5, 6, 5, 8, 13, 13, 8, 13, 28, 39, 28, 13, 21, 60, 115, 115, 60, 21, 34, 129, 337, 467, 337, 129, 34, 55, 277, 993, 1880, 1880, 993, 277, 55, 89, 595, 2919, 7604, 10290, 7604, 2919, 595, 89, 144, 1278, 8587, 30721, 56955, 56955, 30721, 8587, 1278, 144, 233
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..0. .0..1..0..0 ..1..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1 ..0..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..0 ..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0 ..1..0..0..0. .0..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..311
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3)
k=3: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-4)
k=4: a(n) = 2*a(n-1) +7*a(n-2) +6*a(n-3) -3*a(n-4) -4*a(n-5) +a(n-6)
k=5: [order 38]
k=6: [order 92]
Comments