A295920 Number of twice-factorizations of n of type (P,R,R).
1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The a(64) = 17 twice-factorizations are: (2)*(2)*(2)*(2)*(2)*(2) (2*2)*(2*2)*(2*2) (2*2*2)*(2*2*2) (2*2*2*2*2*2) (2*2)*(2*2)*(4) (2*2)*(4)*(2*2) (4)*(2*2)*(2*2) (2*2)*(4)*(4) (4)*(2*2)*(4) (4)*(4)*(2*2) (2*2*2)*(8) (8)*(2*2*2) (4)*(4)*(4) (4*4*4) (8)*(8) (8*8) (64)
Links
Crossrefs
Programs
-
Mathematica
Table[Sum[Length[Divisors[GCD@@FactorInteger[n^(1/d)][[All,2]]]]^d,{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
-
PARI
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409 A295920(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, if(!ispower(n,d,&r),(1/0),numdiv(A052409(r))^d))); \\ Antti Karttunen, Dec 06 2018, after Mathematica-code
Formula
a(n) = Sum_{d|A052409(n)} A000005(A052409(n^(1/d)))^d. - Antti Karttunen, Dec 06 2018, after Mathematica-code
Extensions
More terms from Antti Karttunen, Dec 06 2018
Comments