A295931 Number of ways to write n in the form n = (x^y)^z where x, y, and z are positive integers.
1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The a(256) = 10 ways are: (2^1)^8 (2^2)^4 (2^4)^2 (2^8)^1 (4^1)^4 (4^2)^2 (4^4)^1 (16^1)^2 (16^2)^1 (256^1)^1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m,d,t; m:= igcd(seq(t[2],t=ifactors(n)[2])); add(numtheory:-tau(d),d=numtheory:-divisors(m)) end proc: f(1):= 1: map(f, [$1..100]); # Robert Israel, Dec 19 2017
-
Mathematica
Table[Sum[DivisorSigma[0,d],{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
Comments