cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295931 Number of ways to write n in the form n = (x^y)^z where x, y, and z are positive integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2017

Keywords

Comments

By convention a(1) = 1.
Values can be 1, 3, 6, 9, 10, 15, 18, 21, 27, 28, 30, 36, 45, 54, 60, 63, 84, 90, etc. - Robert G. Wilson v, Dec 10 2017

Examples

			The a(256) = 10 ways are:
(2^1)^8    (2^2)^4   (2^4)^2  (2^8)^1
(4^1)^4    (4^2)^2   (4^4)^1
(16^1)^2   (16^2)^1
(256^1)^1
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m,d,t;
      m:= igcd(seq(t[2],t=ifactors(n)[2]));
      add(numtheory:-tau(d),d=numtheory:-divisors(m))
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Dec 19 2017
  • Mathematica
    Table[Sum[DivisorSigma[0,d],{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]

Formula

a(A175082(k)) = 1, a(A093771(k)) = 3.
a(n) = Sum_{d|A052409(n)} A000005(d).