A295987 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step patterns 010 or 101, where 1=up and 0=down; triangle T(n,k), n >= 0, k = max(0, n-3), read by rows.
1, 1, 2, 6, 14, 10, 52, 36, 32, 204, 254, 140, 122, 1010, 1368, 1498, 620, 544, 5466, 9704, 9858, 9358, 3164, 2770, 34090, 67908, 90988, 72120, 63786, 18116, 15872, 233026, 545962, 762816, 839678, 560658, 470262, 115356, 101042, 1765836, 4604360, 7458522
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 1; : 2; : 6; : 14, 10; : 52, 36, 32; : 204, 254, 140, 122; : 1010, 1368, 1498, 620, 544; : 5466, 9704, 9858, 9358, 3164, 2770; : 34090, 67908, 90988, 72120, 63786, 18116, 15872; : 233026, 545962, 762816, 839678, 560658, 470262, 115356, 101042;
Links
- Alois P. Heinz, Rows n = 0..143, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, t, h) option remember; expand( `if`(u+o=0, 1, `if`(t=0, add(b(u-j, j-1, 1$2), j=1..u), add(`if`(h=3, x, 1)*b(u-j, o+j-1, [1, 3, 1][t], 2), j=1..u)+ add(`if`(t=3, x, 1)*b(u+j-1, o-j, 2, [1, 3, 1][h]), j=1..o)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$3)): seq(T(n), n=0..12);
-
Mathematica
b[u_, o_, t_, h_] := b[u, o, t, h] = Expand[If[u + o == 0, 1, If[t == 0, Sum[b[u - j, j - 1, 1, 1], {j, 1, u}], Sum[If[h == 3, x, 1]*b[u - j, o + j - 1, {1, 3, 1}[[t]], 2], {j, 1, u}] + Sum[If[t == 3, x, 1]*b[u + j - 1, o - j, 2, {1, 3, 1}[[h]]], {j, 1, o}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 07 2018, from Maple *)