A295989 Irregular triangle T(n, k), read by rows, n >= 0 and 0 <= k < A001316(n): T(n, k) is the (k+1)-th nonnegative number m such that n AND m = m (where AND denotes the bitwise AND operator).
0, 0, 1, 0, 2, 0, 1, 2, 3, 0, 4, 0, 1, 4, 5, 0, 2, 4, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 8, 0, 1, 8, 9, 0, 2, 8, 10, 0, 1, 2, 3, 8, 9, 10, 11, 0, 4, 8, 12, 0, 1, 4, 5, 8, 9, 12, 13, 0, 2, 4, 6, 8, 10, 12, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0
Offset: 0
Examples
Triangle begins: 0: [0] 1: [0, 1] 2: [0, 2] 3: [0, 1, 2, 3] 4: [0, 4] 5: [0, 1, 4, 5] 6: [0, 2, 4, 6] 7: [0, 1, 2, 3, 4, 5, 6, 7] 8: [0, 8] 9: [0, 1, 8, 9] 10: [0, 2, 8, 10] 11: [0, 1, 2, 3, 8, 9, 10, 11] 12: [0, 4, 8, 12] 13: [0, 1, 4, 5, 8, 9, 12, 13] 14: [0, 2, 4, 6, 8, 10, 12, 14] 15: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Links
- Rémy Sigrist, Rows n = 0..256, flattened
- Rémy Sigrist, Scatterplot of (n, T(n, k)) for n = 0..1023 and k = 0..A001316(n)-1
Crossrefs
Programs
-
Mathematica
A295989row[n_] := Select[Range[0, n], BitAnd[#, n-#] == 0 &]; Array[A295989row, 25, 0] (* Paolo Xausa, Feb 24 2024 *)
-
PARI
T(n,k) = if (k==0, 0, n%2==0, 2*T(n\2,k), k%2==0, 2*T(n\2, k\2), 2*T(n\2, k\2)+1)
Formula
For any n >= 0 and k such that 0 <= k < A001316(n):
- T(n, 0) = 0,
- T(2*n, k) = 2*T(n, k),
- T(2*n+1, 2*k) = 2*T(n, k),
- T(2*n+1, 2*k+1) = 2*T(n, k) + 1.
Comments