A296001 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 10, 43, 185, 796, 3425, 14737, 63411, 272845, 1174000, 5051498, 21735632, 93524277, 402417118, 1731524071, 7450417675, 32057725596, 137938276110, 593522081260, 2553812262104, 10988566855385, 47281706383454, 203444160458068, 875381402033582
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = a(0)*b(1) + a(1)*b(0) = 10 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}]; (* A296001 *) t = N[Table[a[n]/a[n - 1], {n, 1, 500, 100}], 200] Take[RealDigits[Last[t], 10][[1]], 100] (* A296002 *)
Extensions
Conjectured g.f. removed by Alois P. Heinz, Jun 25 2018
Comments