A296005 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0), where a(0) = 2, a(1) = 3, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 11, 33, 104, 323, 1007, 3136, 9769, 30431, 94791, 295274, 919773, 2865082, 8924690, 27800290, 86597525, 269750118, 840267961, 2617423311, 8153238141, 25397226311, 79112015761, 246432856920, 767635009499, 2391172651130, 7448470401642, 23201884354901
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, so that a(2) = a(0)*b(1) + a(1)*b(0) = 11 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; a[0] = 2; a[1] = 3; b[0] = 1; a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}]; (* A296005 *) t = N[Table[a[n]/a[n - 1], {n, 1, 500, 100}], 200] Take[RealDigits[Last[t], 10][[1]], 100] (* A296006 *)
Extensions
Conjectured g.f. removed by Alois P. Heinz, Jun 25 2018
Comments