A296012 Primes of the form k + k+1 + k+2 +-1 where k, k+1, and k+2 are all composite numbers.
79, 101, 103, 149, 151, 167, 191, 193, 227, 229, 257, 277, 281, 283, 347, 349, 353, 359, 367, 373, 401, 431, 433, 439, 461, 463, 479, 509, 557, 563, 607, 613, 617, 619, 641, 643, 647, 653, 659, 661, 709, 733, 739, 743, 761, 797, 821, 823, 857, 859, 863, 887, 907, 911, 967, 971, 977, 983, 1019, 1021
Offset: 1
Keywords
Examples
25 + 26 + 27 + 1 = 79, 33 + 34 + 35 - 1 = 101, 33 + 34 + 35 + 1 = 103, etc.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local k; if not isprime(n) then return false fi; k:= floor((n-2)/3); not isprime(k) and not isprime(k+1) and not isprime(k+2) end proc: select(filter, [seq(i,i=5..2000, 2)]); # Robert Israel, Dec 03 2017
-
Mathematica
Select[Join @@ Map[{{Total@ # - 1, #}, {Total@ # + 1, #}} &, Partition[Range@ 350, 3, 1]], And[PrimeQ@ First@ #, AllTrue[Last@ #, CompositeQ]] &][[All, 1]] (* Michael De Vlieger, Dec 03 2017 *)
-
Python
from _future_ import division from sympy import nextprime, isprime A296012_list, p = [], 2 while len(A296012_list) < 10000: k = (p-2)//3 if not (isprime(k) or isprime(k+2)): A296012_list.append(p) p = nextprime(p) # Chai Wah Wu, Jan 24 2018
Comments