cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295987 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step patterns 010 or 101, where 1=up and 0=down; triangle T(n,k), n >= 0, k = max(0, n-3), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 14, 10, 52, 36, 32, 204, 254, 140, 122, 1010, 1368, 1498, 620, 544, 5466, 9704, 9858, 9358, 3164, 2770, 34090, 67908, 90988, 72120, 63786, 18116, 15872, 233026, 545962, 762816, 839678, 560658, 470262, 115356, 101042, 1765836, 4604360, 7458522
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2017

Keywords

Examples

			Triangle T(n,k) begins:
:      1;
:      1;
:      2;
:      6;
:     14,     10;
:     52,     36,     32;
:    204,    254,    140,    122;
:   1010,   1368,   1498,    620,    544;
:   5466,   9704,   9858,   9358,   3164,   2770;
:  34090,  67908,  90988,  72120,  63786,  18116,  15872;
: 233026, 545962, 762816, 839678, 560658, 470262, 115356, 101042;
		

Crossrefs

Column k=0 gives A295974.
Last elements of rows for n>3 give: A001250, A260786, 2*A000111.
Row sums give A000142.

Programs

  • Maple
    b:= proc(u, o, t, h) option remember; expand(
               `if`(u+o=0, 1, `if`(t=0, add(b(u-j, j-1, 1$2), j=1..u),
           add(`if`(h=3, x, 1)*b(u-j, o+j-1, [1, 3, 1][t], 2), j=1..u)+
           add(`if`(t=3, x, 1)*b(u+j-1, o-j, 2, [1, 3, 1][h]), j=1..o))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=0..12);
  • Mathematica
    b[u_, o_, t_, h_] := b[u, o, t, h] = Expand[If[u + o == 0, 1, If[t == 0, Sum[b[u - j, j - 1, 1, 1], {j, 1, u}], Sum[If[h == 3, x, 1]*b[u - j, o + j - 1, {1, 3, 1}[[t]], 2], {j, 1, u}] + Sum[If[t == 3, x, 1]*b[u + j - 1, o - j, 2, {1, 3, 1}[[h]]], {j, 1, o}]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 0, 0]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 07 2018, from Maple *)

A295974 Number of length-n permutations avoiding descent patterns aba and bab.

Original entry on oeis.org

1, 1, 2, 6, 14, 52, 204, 1010, 5466, 34090, 233026, 1765836, 14534404, 129916550, 1248875862, 12872804422, 141470905326, 1652327596652, 20430973234388, 266683791698634, 3664052636652962, 52859944626536554, 798893924217099426, 12622926284124944660
Offset: 0

Views

Author

Jeffrey Shallit, Dec 01 2017

Keywords

Comments

The descent pattern of a permutation is the sign of the first difference of the permutation, with "a" denoting a rise (+1) and "b" denoting a descent (-1). For example, the permutation 364125 has descent pattern abbaa.

Examples

			For n = 4 the 10 permutations NOT counted are 1324, 1423, 2143, 2314, 2413, 3142, 3241, 3412, 4132, 4231.
		

Crossrefs

Column k=0 of A295987.
Cf. A296054.

Programs

  • Maple
    b:= proc(u, o, t, h) option remember;
               `if`(u+o=0, 1, `if`(t=0, add(b(u-j, j-1, 1$2), j=1..u),
           add(`if`(h=3, 0, b(u-j, o+j-1, [1, 3, 1][t], 2)), j=1..u)+
           add(`if`(t=3, 0, b(u+j-1, o-j, 2, [1, 3, 1][h])), j=1..o)))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 01 2017
  • Mathematica
    b[u_, o_, t_, h_] := b[u, o, t, h] = If[u + o == 0, 1, If[t == 0, Sum[b[u - j, j - 1, 1, 1], {j, 1, u}], Sum[If[h == 3, 0, b[u - j, o + j - 1, {1, 3, 1}[[t]], 2]], {j, 1, u}] + Sum[If[t == 3, 0, b[u + j - 1, o - j, 2, {1, 3, 1}[[h]]]], {j, 1,o}]]];
    a[n_] := b[n, 0, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 28 2017, after Alois P. Heinz *)

Formula

Ehrenborg and Jung prove that a(n) ~ 0.8908970548...*(0.6869765032...)^(n-3)*n!.

Extensions

a(13)-a(23) from Alois P. Heinz, Dec 01 2017
Showing 1-2 of 2 results.