cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296044 a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^n.

Original entry on oeis.org

1, 1, 5, 22, 101, 481, 2330, 11425, 56549, 281911, 1413465, 7120136, 36006362, 182681916, 929461993, 4740491107, 24229115109, 124069449335, 636376573943, 3268955179686, 16814509004601, 86593280920756, 446437797872016, 2303948443259841, 11900990745759578, 61526182236027756
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[((1 - x^(4 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(EllipticTheta[2, 0, x]/EllipticTheta[2, Pi/4, x^(1/2)]/(16 x)^(1/8))^n, {x, 0, n}], {n, 0, 25}]
    (* Calculation of constant d: *) With[{k = 4}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} ((1 - x^(4*k))/(1 - x^k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.2749356339591798618290252741994029798069148326559... and c = 0.2726256757090475625917361066565981461455343437... - Vaclav Kotesovec, Dec 05 2017

A296067 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, -1, 0, 1, 3, -1, 0, 0, 1, 4, 0, -2, 1, 0, 1, 5, 2, -5, 3, 0, 0, 1, 6, 5, -8, 3, 2, -1, 0, 1, 7, 9, -10, -1, 9, -4, -1, 0, 1, 8, 14, -10, -10, 20, -7, -4, 2, 0, 1, 9, 20, -7, -24, 31, -2, -15, 5, 1, 0, 1, 10, 27, 0, -42, 36, 20, -40, 9, 8, -2, 0, 1, 11, 35, 12, -62, 28, 65, -75, 3, 27, -8, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k - 3)*x^2 + (1/6)*k*(k^2 - 9*k + 8)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 59*k - 18)*x^4 + (1/120)*k*(k^4 - 30*k^3 + 215*k^2 - 330*k + 144)*x^5 + ...
Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0, -1, -1,  0,   2,   5,  ...
0,  0, -2, -5,  -8, -10,  ...
0,  1,  3,  3,  -1, -10,  ...
0,  0,  2,  9,  20,  31,  ...
		

Crossrefs

Columns k=0..8 give A000007, A029838, A029839, A029840, A029841, A029842, A029843, A029844, A029845 (with offset 0).
Main diagonal gives A296043.
Cf. A296068.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i - 1))/(1 + x^(2 i)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(x^(1/8) EllipticTheta[2, 0, x^(1/2)]/EllipticTheta[2, 0, x])^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.
G.f. of column k: (x^(1/8)*theta_2(sqrt(x))/theta_2(x))^k, where theta_() is the Jacobi theta function.

A302020 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^(2*k))/(1 - x^(2*k-1))).

Original entry on oeis.org

1, 1, 2, 5, 12, 28, 66, 156, 367, 863, 2031, 4779, 11244, 26456, 62248, 146462, 344608, 810822, 1907769, 4488757, 10561519, 24850017, 58469179, 137571128, 323688747, 761601701, 1791959579, 4216270956, 9920391613, 23341519267, 54919860316, 129219997322, 304039515247, 715369360371
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2018

Keywords

Crossrefs

Antidiagonal sums of A296068.

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - x Product[(1 + x^(2 k))/(1 - x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[1/(1 + (1 - x) QPochhammer[-1, x^2]/(2 QPochhammer[1/x, x^2])), {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[1/(1 - x EllipticTheta[2, 0, x]/(Sqrt[2] x^(1/8) EllipticTheta[2, Pi/4, Sqrt[x]])), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 - x^(4*k))/(1 - x^k)).
G.f.: 1/(1 - x*Product_{k>=1} (1 + x^k + x^(2*k) + x^(3*k))).
a(0) = 1; a(n) = Sum_{k=1..n} A001935(k-1)*a(n-k).
Showing 1-3 of 3 results.