A296070 Partial sums of A296069.
0, 2, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Cf. A296069.
Programs
-
Mathematica
Accumulate@ Nest[Append[#, Block[{k = 1, s = 1}, While[Nand[FreeQ[#, s k], And[IntegerQ@ Mean@ #, Total@ # != 0] &@ Append[#, s k]], If[s == 1, s = -1, k++; s = 1]]; s k]] &, {0}, 59] (* Michael De Vlieger, Dec 12 2017 *)
-
PARI
concat(0, Vec(x^2*(2 + 3*x + 4*x^2 - x^3 - 2*x^4) / ((1 - x)^2*(1 + x)^2) + O(x^80))) \\ Colin Barker, Mar 19 2020
Formula
From Colin Barker, Mar 19 2020: (Start)
G.f.: x^2*(2 + 3*x + 4*x^2 - x^3 - 2*x^4) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>6.
a(n) = (3 + (-1)^n)*n / 2 for n>2.
(End)