cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296074 Sum of deficiencies of the proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 6, 1, 5, 1, 8, 7, 4, 1, 9, 1, 9, 9, 12, 1, 2, 5, 14, 8, 13, 1, 16, 1, 5, 13, 18, 11, 3, 1, 20, 15, 8, 1, 24, 1, 21, 18, 24, 1, -9, 7, 27, 19, 25, 1, 20, 15, 14, 21, 30, 1, -1, 1, 32, 24, 6, 17, 40, 1, 33, 25, 40, 1, -27, 1, 38, 32, 37, 17, 48, 1, -1, 22, 42, 1, 9, 21, 44, 31, 26, 1, 18, 19, 45, 33, 48, 23, -36, 1, 53, 36, 33
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Examples

			For n = 6, whose proper divisors are 1, 2, 3, their deficiencies are 1, 1, 2, thus a(6) = 1+1+2 = 4.
For n = 12, whose proper divisors are 1, 2, 3, 4, 6, their deficiencies are 1, 1, 2, 1, 0, thus a(12) = 1+1+2+1+0 = 5.
		

Crossrefs

Cf. A033879.
Cf. also A294886, A294887, A294888, A294889, A293438 (product of).

Programs

  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 0; a[n_] := Module[{f = FactorInteger[n]}, 3 * Times @@ f1 @@@ f - Times @@ f2 @@@ f - 2*n]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A033879(n) = ((2*n)-sigma(n));
    A296074(n) = sumdiv(n,d,(dA033879(d));

Formula

a(n) = Sum_{d|n, dA033879(d).
a(n) = A296075(n) - A033879(n).
Sum_{k=1..n} a(k) ~ (Pi^2/4 - Pi^4/72 - 1) * n^2. - Amiram Eldar, Dec 04 2023