A296104 Numbers k such that 2^k == 3 (mod k-1).
2, 111482, 465794, 79036178, 1781269903308, 250369632905748, 708229497085910, 15673900819204068
Offset: 1
Links
- W. L. McDaniel, Some Pseudoprimes and Related Numbers Having Special Forms, Math. Comp. 53:187 (1989), 407-409.
Programs
-
Mathematica
k = 2; lst = {2}; While[k < 1000000001, If[ PowerMod[2, k, k -1] == 3, AppendTo[lst, k]]; k += 10; If[ PowerMod[2, k, k -1] == 3, AppendTo[lst, k]]; k += 2]; lst (* Robert G. Wilson v, Jan 01 2018 *)
-
PARI
is_A296104(n) = Mod(2, n-1)^n == 3; \\ Iain Fox, Dec 07 2017
-
Python
A296104_list = [n for n in range(2,10**6) if pow(2,n,n-1) == 3 % (n-1)] # Chai Wah Wu, Dec 06 2017
Formula
a(n) = A296370(n) + 1.
Comments