cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296118 Number of ways to choose a factorization of each factor in a strict factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 18, 3, 3, 3, 23, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 45, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 34, 3, 12, 1, 8, 3, 12, 1, 66, 1, 3, 8, 8, 3, 12, 1, 45, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Examples

			The a(12) = 8 twice-factorizations are (2)*(2*3), (2)*(6), (3)*(2*2), (3)*(4), (2*2*3), (2*6), (3*4), (12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Times@@(Length[facs[#]]&/@f),{f,Select[facs[n],UnsameQ@@#&]}],{n,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A001055(n/d, d))));
    A296118(n, m=n) = ((n<=m)*A001055(n) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA001055(d)*A296118(n/d, d-1)))); \\ Antti Karttunen, Oct 08 2018

Formula

Dirichlet g.f.: Product_{n > 1}(1 + A001055(n)/n^s).