A296118 Number of ways to choose a factorization of each factor in a strict factorization of n.
1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 18, 3, 3, 3, 23, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 45, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 34, 3, 12, 1, 8, 3, 12, 1, 66, 1, 3, 8, 8, 3, 12, 1, 45, 8, 3
Offset: 1
Keywords
Examples
The a(12) = 8 twice-factorizations are (2)*(2*3), (2)*(6), (3)*(2*2), (3)*(4), (2*2*3), (2*6), (3*4), (12).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Times@@(Length[facs[#]]&/@f),{f,Select[facs[n],UnsameQ@@#&]}],{n,100}]
-
PARI
A001055(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A001055(n/d, d)))); A296118(n, m=n) = ((n<=m)*A001055(n) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d
A001055(d)*A296118(n/d, d-1)))); \\ Antti Karttunen, Oct 08 2018
Formula
Dirichlet g.f.: Product_{n > 1}(1 + A001055(n)/n^s).