cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296122 Number of twice-partitions of n with no repeated partitions.

Original entry on oeis.org

1, 1, 2, 5, 10, 20, 40, 77, 157, 285, 552, 1018, 1921, 3484, 6436, 11622, 21082, 37550, 67681, 119318, 211792, 372003, 653496, 1137185, 1986234, 3429650, 5935970, 10205907, 17537684, 29958671, 51189932, 86967755, 147759421, 249850696, 422123392, 710495901
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of sequences of distinct integer partitions whose sums are weakly decreasing and add up to n.

Examples

			The a(4) = 10 twice-partitions: (4), (31), (22), (211), (1111), (3)(1), (21)(1), (111)(1), (2)(11), (11)(2).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(j!*
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 06 2017
  • Mathematica
    Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@p],UnsameQ@@#&],{p,IntegerPartitions[n]}]],{n,15}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[j!*
         Binomial[PartitionsP[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 40] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(15)-a(34) from Robert G. Wilson v, Dec 06 2017