A296122 Number of twice-partitions of n with no repeated partitions.
1, 1, 2, 5, 10, 20, 40, 77, 157, 285, 552, 1018, 1921, 3484, 6436, 11622, 21082, 37550, 67681, 119318, 211792, 372003, 653496, 1137185, 1986234, 3429650, 5935970, 10205907, 17537684, 29958671, 51189932, 86967755, 147759421, 249850696, 422123392, 710495901
Offset: 0
Keywords
Examples
The a(4) = 10 twice-partitions: (4), (31), (22), (211), (1111), (3)(1), (21)(1), (111)(1), (2)(11), (11)(2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(j!* binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..40); # Alois P. Heinz, Dec 06 2017
-
Mathematica
Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@p],UnsameQ@@#&],{p,IntegerPartitions[n]}]],{n,15}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[j!* Binomial[PartitionsP[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; a[n_] := b[n, n]; a /@ Range[0, 40] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)
Extensions
a(15)-a(34) from Robert G. Wilson v, Dec 06 2017
Comments