A296142 Triangle read by rows: first row is 2; given row k, define the elements of row k+1 as the (sorted) elements derived from row k by two recursion rules: (i.) if x is in row k, then (x+5)^2 is in row k+1; (ii.) if x^2 is in row k, then x is in row k+1.
2, 49, 7, 2916, 54, 144, 8532241, 12, 2921, 3481, 22201, 72799221804516, 59, 149, 289, 8532246, 8561476, 12152196, 493106436, 5299726695343845803536039441, 17, 2926, 3486, 4096, 22206, 23716, 86436, 72799221804521, 72799307127001, 73298956913361, 147675989144401, 243153962155686481
Offset: 1
Examples
First few rows are 2; 49; 7, 2916; 54, 144, 8532241; 12, 2921, 3481, 22201, 72799221804516; 59, 149, 289, 8532246, 8561476, 12152196, 493106436, 299726695343845803536039441; 17, 2926, 3486, 4096, 22206, 23716, 86436, 72799221804521, 72799307127001, 73298956913361, 147675989144401, 243153962155686481, 28087103045340200593045577229687766576786428563667986916;
Links
- Jeremy F. Alm, Table of n, a(n) for n = 1..236
- Jeremy F. Alm, First 10 rows
Programs
-
Mathematica
NestList[Complement[DeleteDuplicates@ Join[# /. s_ /; IntegerQ@ Sqrt@ s :> Sqrt@ s, # /. k_ :> (k + 5)^2], #] &, {2}, 6] // Flatten (* Michael De Vlieger, Dec 06 2017 *)
-
PARI
lista(nn) = my(row = [2], all = row); for (n=1, nn, row = concat(apply(x->(x+5)^2, row), apply(x->sqrtint(x), select(issquare, row))); all = concat(all, vecsort(row,,8));); all; \\ Michel Marcus, Oct 16 2023
Comments