cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296177 G.f. equals the logarithm of the e.g.f. of A296176.

Original entry on oeis.org

1, -15, -6090, -30600650, -593306350650, -31192838317208826, -3652177141294409632400, -836986399841753367052602000, -342157863774785896821739864893375, -232492750600387706453977026534258393375, -248374508240426643818180115122847840121356750, -398845502818641863837604075681689663598753652620750
Offset: 1

Views

Author

Paul D. Hanna, Dec 07 2017

Keywords

Comments

E.g.f. G(x) of A296176 satisfies: [x^(n-1)] G(x)^(n^5) = [x^n] G(x)^(n^5) for n>=1.

Examples

			G.f. A(x) = x - 15*x^2 - 6090*x^3 - 30600650*x^4 - 593306350650*x^5 - 31192838317208826*x^6 - 3652177141294409632400*x^7 - 836986399841753367052602000*x^8 - 342157863774785896821739864893375*x^9 - 232492750600387706453977026534258393375*x^10 +...
such that
G(x) = exp(A(x)) = 1 + x - 29*x^2/2! - 36629*x^3/3! - 734559239*x^4/4! - 71200423546199*x^5/5! - 22459270436075644469*x^6/6! - 18407129959728493123679069*x^7/7! - 33747438879000326056232288023439*x^8/8! - 124162549312926509293620790889452447919*x^9/9! - 843670934957017748849439817665935283173590349*x^10/10! +...
satisfies [x^(n-1)] G(x)^(n^5) = [x^n] G(x)^(n^5) for n>=1.
Series_Reversion(A(x)) = x + 15*x^2 + 6540*x^3 + 31074275*x^4 + 596201157450*x^5 + 31256650109242326*x^6 + 3655957957134009767520*x^7 + 837481638576442353884460435*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n+1, A=concat(A,0); V=Vec(Ser(A)^((#A-1)^5)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^5 ); polcoeff(log(Ser(A)),n)}
    for(n=1,30,print1(a(n),", "))