A296184 Decimal expansion of 2 + phi, with the golden section phi from A001622.
3, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9
Offset: 1
Examples
3.618033988749894848204586834365638117720309179805762862135448622705260462...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.25, p. 417.
Links
- Sumit Kumar Jha, Two complementary relations for the Rogers-Ramanujan continued fraction, arXiv:2112.12081 [math.NT], 2021.
- Index entries for algebraic numbers, degree 2.
Crossrefs
Programs
-
Mathematica
First@ RealDigits[2 + GoldenRatio, 10, 77] (* Michael De Vlieger, Jan 13 2018 *)
-
PARI
(5 + sqrt(5))/2 \\ Altug Alkan, Mar 19 2018
Formula
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!+40*n!^2)/(2*n!^2*3^(2*n+2)).
Equals 5/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Constant c = 2 + 2*cos(2*Pi/10). The linear fractional transformation z -> c - c/z has order 10, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(z)))))))))). - Peter Bala, May 09 2024
Comments