A296219 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 10, 17, 21, 25, 29, 33, 38, 45, 49, 53, 57, 61, 66, 73, 77, 82, 89, 93, 98, 105, 109, 114, 121, 125, 130, 137, 141, 145, 150, 157, 161, 165, 169, 173, 178, 185, 189, 194, 201, 205, 210, 217, 221, 226, 233, 237, 242, 249, 253, 257, 262, 269, 273, 277
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 a(2) = a(0)*b(1) + a(1)*b(0) = 10 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A296000.
Programs
-
Mathematica
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[0]*b[n - 1] + a[1]*b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; u = Table[a[n], {n, 0, 500}]; (* A296219 *) Table[b[n], {n, 0, 20}]
Extensions
Conjectured g.f. removed by Alois P. Heinz, Jun 25 2018
Comments