A296221 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 11, 40, 146, 533, 1946, 7105, 25941, 94714, 345812, 1262601, 4609907, 16831321, 61453163, 224372837, 819212023, 2991040928, 10920647625, 39872588647, 145579582824, 531528442330, 1940673819263, 7085631873740, 25870488153041, 94456241758347
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 a(2) = a(0)*b(1) + a(1)*b(0) + 1 = 11 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}] + 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; u = Table[a[n], {n, 0, 200}]; (* A296221 *) Table[b[n], {n, 0, 20}] t = N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200]; d = RealDigits[Last[t], 10][[1]] (* A296222 *)
Extensions
Conjectured g.f. removed by Alois P. Heinz, Jun 25 2018
Comments