A296240 Pisano quotients: a(n) = (p-1)/k(p) if p == +- 1 mod 5, = (2*p+2)/k(p) if p == +- 2 mod 5, where p = prime(n) and k(p) = Pisano period(p).
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 1, 1, 2, 9, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 3, 1, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 2, 20, 1, 6, 1, 9, 3, 1, 1, 1, 1, 1, 1
Offset: 4
Keywords
Links
- A. Elsenhans and J. Jahnel, The Fibonacci sequence modulo p^2 -- An investigation by computer for p < 10^14, arXiv 1006.0824 [math.NT], 2010.
- D. Jarden, Two theorems on Fibonacci's sequence, Amer. Math. Monthly, 53 (1946), 425-427.
- D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
- Wikipedia, Wall-Sun-Sun prime
Programs
-
Mathematica
With[{p = Prime[n]}, T = Table[a = {1, 0}; a0 = a; k = 0; While[k++; s = Mod[Plus @@ a, p]; a = RotateLeft[a]; a[[2]] = s; a != a0]; k, {n, 1, 130}]; Table[L = KroneckerSymbol[p, 5]; (3 - L)/2 (p - L)/T[[n]], {n, 4, 130}]] (* after T. D. Noe *)
Comments