cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296240 Pisano quotients: a(n) = (p-1)/k(p) if p == +- 1 mod 5, = (2*p+2)/k(p) if p == +- 2 mod 5, where p = prime(n) and k(p) = Pisano period(p).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 1, 1, 2, 9, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 3, 1, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 2, 20, 1, 6, 1, 9, 3, 1, 1, 1, 1, 1, 1
Offset: 4

Views

Author

Jonathan Sondow, Dec 09 2017

Keywords

Comments

Wall (1960) in Theorems 6 and 7 proved that a(n) is an integer for n >= 4. Jarden (1946) proved that the sequence is unbounded. See Elsenhans and Jahnel (2010), pp. 1-2.

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[n]}, T = Table[a = {1, 0}; a0 = a; k = 0; While[k++; s = Mod[Plus @@ a, p]; a = RotateLeft[a]; a[[2]] = s; a != a0]; k, {n, 1, 130}]; Table[L = KroneckerSymbol[p, 5]; (3 - L)/2 (p - L)/T[[n]], {n, 4, 130}]] (* after T. D. Noe *)

Formula

a(n) = (3 - L(p))/2 * (p - L(p)) / k(p), where p = prime(n), L(p) = Legendre(p|5), and k(p) = Pisano period(p) = A001175(p).
a(n) > 1 if and only if prime(n) is in A222413.