A296285 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 11, 25, 56, 111, 209, 376, 657, 1123, 1900, 3166, 5234, 8595, 14053, 22903, 37244, 60470, 98074, 158943, 257457, 416883, 674868, 1092349, 1767865, 2860914, 4629533, 7491257, 12121658, 19613843, 31736491, 51351388, 83088999, 134441575, 217531832
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 4, b(1) = 3, b(2) = 5 a(2) = a(0) + a(1) + 2*b(0) = 11 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296285 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments