A296287 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 2, a(1) = 3, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 7, 22, 49, 101, 198, 362, 640, 1101, 1861, 3105, 5134, 8434, 13792, 22481, 36561, 59365, 96286, 156050, 252796, 409350, 662696, 1072644, 1735988, 2809332, 4546074, 7356216, 11903158, 19260302, 31164450, 50425806, 81591376, 132018370, 213611004
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + 2*b(0) = 7 Complement: (b(n)) = (1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296287 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments