A296291 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 13, 31, 68, 134, 250, 447, 777, 1323, 2220, 3697, 6097, 10002, 16337, 26609, 43250, 70199, 113827, 184444, 298731, 483679, 782960, 1267237, 2050845, 3318782, 5370381, 8689973, 14061250, 22752180, 36814450, 59567715, 96383317, 155952253, 252336862
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5 a(2) = a(0) + a(1) + 2*b(1) = 11 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296291 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments