A296292 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 4, 12, 31, 67, 133, 248, 444, 772, 1315, 2217, 3686, 6083, 9977, 16298, 26545, 43147, 70032, 113557, 184007, 298024, 482535, 781109, 1264242, 2045999, 3310941, 5357694, 8669445, 14028035, 22698437, 36727492, 59427014, 96155658, 155583893, 251740843
Offset: 0
Examples
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5 a(2) = a(0) + a(1) + 2*b(1) = 12 Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296292 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments