A296296 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 15, 36, 79, 155, 288, 513, 889, 1510, 2529, 4193, 6914, 11328, 18494, 30107, 48921, 79385, 128702, 208524, 337706, 546755, 885033, 1432409, 2318114, 3751248, 6070142, 9822227, 15893265, 25716449, 41610734, 67328268, 108940186, 176269708, 285211220
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + 2*b(2) = 15 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296296 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments