cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296361 Number of monohedral disk tilings of type C^t_{3,n}.

Original entry on oeis.org

2, 62, 116, 200, 318, 476, 682, 946, 1272, 1674, 2152, 2724, 3394, 4176, 5078, 6110, 7284, 8614, 10108, 11784, 13646, 15716, 18002, 20522, 23288, 26314, 29616, 33212, 37114, 41344, 45910, 50838, 56140, 61838, 67948, 74488, 81478, 88940, 96890, 105354, 114344
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n + k)/#, n/#]/(n + k) &];
    a[1] = 2; a[n_] := 2*Sum[U[i, n*(6 - i)], {i, 0, 6}];
    Array[a, 50] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    \\ here U is A241926
    U(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}
    a(n)={2*if(n<2, n==1, sum(i=0, 6, U(i,n*(6-i))))} \\ Andrew Howroyd, Jan 09 2018

Formula

Conjectures from Colin Barker, Jan 09 2018: (Start)
G.f.: 2*x*(1 + 28*x - 33*x^2 - 10*x^3 + 34*x^4 - 16*x^5 - 26*x^6 + 35*x^7 + 8*x^8 - 32*x^9 + 13*x^10) / ((1 - x)^5*(1 + x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 3*a(n-6) + 2*a(n-7) + 2*a(n-8) - 3*a(n-9) + a(n-10) for n>11.
(End)
a(n) = 2*Sum_{i=0..6} A241926(i, n*(6-i)) for n > 1. - Andrew Howroyd, Jan 09 2018

Extensions

Terms a(6) and beyond from Lars Blomberg, Jan 09 2018