A296373 Triangle T(n,k) = number of compositions of n whose factorization into Lyndon words (aperiodic necklaces) is of length k.
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 9, 12, 6, 3, 1, 1, 18, 21, 14, 6, 3, 1, 1, 30, 45, 27, 15, 6, 3, 1, 1, 56, 84, 61, 29, 15, 6, 3, 1, 1, 99, 170, 120, 67, 30, 15, 6, 3, 1, 1, 186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1, 335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 3, 3, 1, 1; 6, 5, 3, 1, 1; 9, 12, 6, 3, 1, 1; 18, 21, 14, 6, 3, 1, 1; 30, 45, 27, 15, 6, 3, 1, 1; 56, 84, 61, 29, 15, 6, 3, 1, 1; 99, 170, 120, 67, 30, 15, 6, 3, 1, 1; 186, 323, 254, 136, 69, 30, 15, 6, 3, 1, 1; 335, 640, 510, 295, 142, 70, 30, 15, 6, 3, 1, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Wikipedia, Lyndon word: Standard factorization
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And]; aperQ[q_]:=UnsameQ@@Table[RotateRight[q,k],{k,Length[q]}]; qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],neckQ[Take[q,#]]&&aperQ[Take[q,#]]&]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[qit[#]]===k&]],{n,12},{k,n}]
-
PARI
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} A(n)=[Vecrev(p/y) | p<-EulerMT(y*vector(n, n, sumdiv(n, d, moebius(n/d) * (2^d-1))/n))] { my(T=A(12)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Dec 01 2018
Formula
First column is A059966.