cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298171 Decimal expansion of ratio-sum for A296776; see Comments.

Original entry on oeis.org

5, 6, 1, 1, 5, 6, 2, 0, 5, 7, 6, 5, 6, 2, 2, 5, 4, 7, 7, 0, 3, 2, 4, 4, 3, 4, 5, 6, 0, 9, 2, 5, 7, 9, 4, 8, 0, 9, 8, 2, 7, 0, 9, 5, 8, 6, 5, 5, 5, 5, 7, 3, 7, 0, 6, 5, 0, 1, 9, 0, 5, 7, 3, 9, 5, 3, 5, 1, 0, 5, 4, 3, 3, 1, 7, 6, 6, 7, 6, 0, 2, 0, 1, 0, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A298171, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296462 for related sequences.

Examples

			ratio-sum = 5.611562057656225477032443456092579480982...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n;
    j = 1; While[j < 16, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u =Table[a[n], {n, 0, k}];  (* A296776 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A298171 *)

A298172 Decimal expansion of limiting power-ratio for A296776; see Comments.

Original entry on oeis.org

1, 1, 6, 5, 8, 3, 7, 7, 4, 8, 5, 0, 5, 6, 4, 6, 6, 6, 8, 1, 7, 0, 8, 6, 8, 2, 6, 0, 6, 2, 9, 3, 9, 4, 9, 4, 7, 3, 9, 2, 0, 5, 5, 6, 7, 8, 1, 6, 7, 0, 6, 2, 8, 1, 8, 0, 6, 9, 4, 5, 7, 6, 0, 9, 0, 5, 4, 8, 1, 9, 3, 4, 6, 0, 0, 2, 0, 5, 9, 7, 2, 8, 1, 3, 5, 9
Offset: 2

Views

Author

Clark Kimberling, Feb 09 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296776, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296462 for related sequences.

Examples

			limiting power-ratio = 11.65837748505646668170868260629394947392...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n;
    j = 1; While[j < 16, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296776 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120]   (* A298172 *)

A296463 Expansion of e.g.f. arcsinh(x)*arctanh(x) (even powers only).

Original entry on oeis.org

0, 2, 4, 158, 3624, 427482, 29665260, 6948032310, 991515848400, 383952670412850, 93532380775766100, 53913667654307868750, 20087427376748637675000, 16096655588343149442026250, 8531309209053208518037597500, 9057367559484733295974741323750, 6486329752640392315697926589700000
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 13 2017

Keywords

Examples

			arcsinh(x)*arctanh(x) = 2*x^2/2! + 4*x^4/4! + 158*x^6/6! + 3624*x^8/8! + 427482*x^10/10! + ..
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSinh[x] ArcTanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 16; Table[(CoefficientList[Series[(Log[1 + x] - Log[1 - x]) Log[x + Sqrt[1 + x^2]]/2, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

E.g.f.: arcsin(x)*arctan(x) (even powers only, absolute values).
E.g.f.: (log(1 + x) - log(1 - x))*log(x + sqrt(1 + x^2))/2 (even powers only).
a(n) ~ (2*n-1)! * log(1+sqrt(2)) * (1 - (-1)^n * sqrt(Pi) / (4 * log(1+sqrt(2)) * sqrt(n))). - Vaclav Kotesovec, Dec 13 2017
Showing 1-3 of 3 results.